open-source electrophysiology

September 2019 Newsletter

Added on by Open Ephys.

Pre-prints describing two new tools

A key objective of Open Ephys has always been to make extracellular electrophysiology more accessible. This not only entails making hardware that costs less, but also designing tools that are easy to use. As anyone who does ephys experiments is well aware, there are still many time-consuming steps involved in preparing for each experiment. So we are excited to announce two new tools that will allow you to spend less time building things and more time Doing Science.

The shuttleDrive, developed by Jakob Voigts and Jon Newman at MIT, makes it possible to assemble a 64-channel tetrode implant for a mouse in under a day. The shuttleDrive can be built quickly without sacrificing robustness—the preprint includes quantification of the screw-turn-to-tetrode-depth ratio, which is extremely linear. Most importantly, the components are readily available. Everything you need to get started building mouse shuttleDrives can be purchased through the Open Ephys store.

Twister3, developed by Jon Newman and Jakob Voigts in collaboration with SpikeGadgets, lays to rest the assumption that making tetrodes needs to be a time-consuming process. By eliminating the need to fold wires by hand, and reducing twisting times to a matter of seconds, the Twister3 takes the pain out of tetrode fabrication. Instructions for building Twister3 can be found in the pre-print on bioRxiv, with usage instructions in this handy video. We’re considering selling partially or fully assembled devices through our store, so if you’re at all interested in purchasing one, please fill out the survey on this page to let us know how much you’d be willing to pay for one.

Beta-testing our next-generation system (Open Ephys++)

We are almost ready to roll out our next-generation data acquisition system, which we will be demonstrating at SfN next month. This system, developed by Jon Newman, Jack Zhang, and Jakob Voigts at MIT, can stream thousands of channels of ephys data with sub-millisecond latency through a standard PCIe slot. It was designed to work with novel ultra-compact and fully kitted-out headstages for mice and rats, but it can also interface with the standard Intan headstages you know and love. The system is being used routinely for ephys experiments in the Wilson Lab, and now we’re looking for beta testers to give us feedback on the first round of devices. If you’re interested in becoming a beta tester, please send an email to Beta testers will be able to purchase the system early, and will receive an updated version free of charge if it improves significantly prior to general public release. We will have the system on display at our inaugural booth at SfN, which we’re organizing in collaboration with the UCLA Miniscope team. Our next newsletter will include more information about the booth, poster presentations, and other opportunities to meet with the Open Ephys team in Chicago.

New USB-based acquisition boards with over-voltage protection

All acquisition boards purchased through the Open Ephys store will now include over-voltage protection on the power jack. The device still only works with a 5V supply, but now you won’t fry the board if you accidentally plug in a different type of adapter. Over the past two years, OEPS has repaired 15 boards damaged by an incorrect voltage source. Hopefully this update will help make the acquisition board even more user-friendly.

Welcome Pavel and Anjal to the Open Ephys team

Back in April, the Allen Institute received a BRAIN Initiative U24 award to improve the accessibility of software for Neuropixels probes. The award will provide funding for two software engineers to work on Open Ephys, both of whom have now been hired. Pavel Kulik started working in April, and has already made significant contributions to the code base, including building a NIDAQ plugin for streaming auxiliary analog and digital data from National Instruments devices. Anjal Doshi was hired this month after finishing his CS master’s degree with a specialization in computer graphics. We are excited to have them on our team—be on the lookout for @medengineer or @anjaldoshi responding to your GitHub support requests!

Jon Newman joins the board of directors

We are pleased to have Jon Newman become a member of the Open Ephys board of directors. Jon has been a stalwart supporter of open-source tools throughout his career. His NeuroRighter system was a major source of inspiration for the original Open Ephys acquisition system, and his Cyclops LED driver has become an invaluable component of our optogenetics rigs. More recently, his designs for the shuttleDrive, Twister3, and Open Ephys++, among plenty of other work, have raised the standard for neuroscientific tools—open-source or otherwise. Along with Matt Wilson, Caleb Kemere, Chris Moore, Jakob Voigts, and Josh Siegle, Jon will help guide the overall vision of our organization, and ensure that, as a Massachusetts-based nonprofit, we continue to uphold our mission of promoting “tool-sharing among members of the worldwide systems neuroscience community.”

Until next time, The Open Ephys Team

November 2018 Newsletter

Added on by Josh Siegle.

Open Ephys at SfN 2018

For those of you going to San Diego this year, here are the opportunities to hear more about what we've been up to lately:

At the Monday afternoon session, Jon Newman will be presenting a poster on a PCIe-based platform for real-time feedback experiments. The specs on this thing are pretty incredible—it's easily the most advanced system for high-density tetrode recordings in freely moving rodents. Furthermore, the design includes a general-purpose API for low-latency data transmission, which will facilitate closed-loop experiments with all types of hardware.

We'd love to hear your thoughts on how this system should evolve. Please fill out this survey, and come talk to us on Monday!

431.24 / LLL59: Open Ephys++: High performance open-source firmware, APIs, and hardware for closed-loop neuroscience experiments
November 5
1 - 5 pm
Poster hall!/4649/presentation/24889

On Tuesday evening, we'll be at the Open-Source Technology Social along with a host of other people developing and disseminating open tools for neuroscience.

SS29: Open-Source Technology Social
November 6
6:45 - 8:45 pm
Marriott Marquis - Grand Ballroom 10!/4649/session/272

We also recommend checking out this list of posters and presentations about open-source tools compiled by the folks from Open Behavior.

Neuropixels: 384-channel silicon probes for multi-area recordings

This week saw the official public release of Neuropixels, a new type of silicon probe that is poised to have a major impact on the field of electrophysiology. These probes, which were developed by imec in collaboration with scientists at the Allen Institute, HHMI Janelia Research Campus, and UCL, contain more recording sites per shank than any other implantable neural recording device. Their high channel count makes it possible to record from many structures along the length of the probe, while their compact size makes it easy to insert multiple Neuropixels into the brain at once. They have already facilitated experiments that would have seemed like pipe dreams just a few years ago. For example, the Allen Institute is using Neuropixels to simultaneously record spiking activity from 9 nodes in the mouse visual system, including V1, LGN, superior colliculus, pulvinar, and 5 higher visual areas.

We expect that many members of the Open Ephys community will want to use Neuropixels, so we've tried to make it as easy as possible to integrate them into existing workflows. The Open Ephys GUI can stream data from any type of Neuropixels hardware, so you can take advantage of existing GUI plugins or develop your own.

To obtain probes, you’ll have to fill out the form available at There’s a minimum order size of 20 probes in 2018, with the first 30 orders filled by lottery. In 2019, imec expects to ship 2,400 probes, with the minimum order quantity reduced to five.

If you'll be at SfN, you can learn more about Neuropixels at the Allen Institute booth or check out one of over a dozen posters that include Neuropixels data.

Until next time,
The Open Ephys Team

September 2018 Newsletter

Added on by Josh Siegle.

New product: pyControl

We are pleased to announce that a new open-source device is now available to be purchased through the Open Ephys Store. pyControl is a software/hardware package for implementing rodent behavior experiments, based on the Micropython microcontroller. The USB-based pyControl interface can be hooked up to nose pokes, LEDs, solenoids, audio drivers, and other devices used for behavioral training. A single computer can control many pyControl setups, allowing high-throughput experiments to be implemented at low cost.

From the pyControl documentation:

“pyControl makes it easy to program complex behavioural tasks using a clean, intuitive, and flexible syntax for specifying tasks as state machines. User created task definition files, written in Python, run directly on the microcontroller, supported by pyControl framework code. This gives users the power and simplicity of Python for specifying task behaviour, while allowing advanced users low-level access to the microcontroller hardware.”

pyControl is in daily use in a number of laboratories and has run many thousands of hours of behavior experiments. It's also a great tool for courses, given how easy it is to get started using it.

The system is being actively developed by researchers at the Champalimaud Foundation and Oxford University. Profits from the sale of pyControl will support the continued development of the system. For any questions please contact the pyControl Google Group.

New version of the GUI

Version 0.4.4 of the Open Ephys GUI is now available for download from our website and GitHub. This version includes a number of bug fixes and user interface improvements, including:

  • A new plugin for streaming data from Intan's 1024-channel Recording Controller

  • An improved Pulse Pal plugin that allows the user to configure the device from software

  • An updated FrontPanel DLL that improves performance of our acquisition board on Linux machines

We recommend that all users upgrade to this version. As always, be sure to carefully test any features you need before using this software in your experiments.

This version has been improved by collaborative development more than any previous release. We’d like to thank Alessio Buccino, Ethan Blackwood, Iryna Yavorska, Kevin Boergens, Ben Acland, Martin Spacek, Jon Newman, Evan Matteson, Ronny Eichler, Clayton Barnes, and Chuck Holmes for their invaluable help with testing and bug fixes. And of course, this release would not have been possible without the hard work of our lead support person, Aarón Cuevas López.

Preprints from the Open Ephys community

In the last 2 months, there have been at least four new bioRxiv preprints based on data collected with Open Ephys tools:

A team from the Allen Institute led by Corbett Bennett and Sam Gale has posted a preprint describing their detailed characterization of the lateral posterior thalamic nucleus of mice. They found that this nucleus contains three sub-regions, each with its own distinct anatomical connections, cellular tuning properties, and maps of visual space. All of the data was collected with “Phase 2” Neuropixels probes using the Open Ephys acquisition board.

Nikolaos Karalis and Anton Sirota from Ludwig-Maximilian University Munich have shown that long-range coordination between the components of the limbic system is orchestrated by respiratory rhythms. Breathing creates an oscillatory scaffold that may facilitate information transmission between disparate regions of the rodent brain. They used chronically implanted tungsten electrodes and silicon probes streaming data through the Open Ephys acquisition board.

Michael Okun (now at University of Leicester) and his colleagues at UCL have released a preprint characterizing the dynamics of prefrontal neurons across a wide range of timescales. They find that coordination between individual units and their neighbors can be quite distinct, depending on the timescale under investigation. Much of the data was collected with chronically implanted silicon probes using the Open Ephys acquisition board.

Hyeyoung Shin and Chris Moore at Brown University have posted their recent findings on gamma oscillations in somatosensory cortex. They describe a class of fast-spiking interneurons that fire at gamma frequencies but are not strongly driven by sensory inputs. The precision with which these neurons are time-locked to gamma on a given trial is correlated with detection performance in mice trained to respond to whisker deflections. The authors used flexDrives and Open Ephys acquisition boards to collect all the data in this study.

We are happy to see so many exciting results coming out of the Open Ephys community. If you are aware of other preprints or publications using Open Ephys, please let us know!

Until next time, 
The Open Ephys Team

November 2017 Newsletter

Added on by Josh Siegle.

Open Ephys at SfN

We're not hosting an info session this year, but there are a number of other opportunities to meet with us next week in DC:

On Monday at 9:35 am in room 145B, Jakob Voigts will be giving a presentation on Open Ephys as part of a Minisymposium on Open-Source Hardware for Neuroscience. Other presenters in this session include Josh Sanders of Sanworks and Gonçalo Lopes of UCL, two scientists/engineers that have worked closely with Open Ephys in the past. We highly recommend attending if you can!

In the Tuesday morning session (VV58), Jon Newman will be presenting a poster on a versatile 64- and 256-channel headstage optimized for closed-loop feedback experiments in freely behaving animals. The headstage plugs directly into a PCIe card, meaning no external acquisition system is required. We plan on manufacturing and selling these headstages via our partnership with OEPS, in order to make them more accessible to the community.

On Monday evening from 7-8:30 pm in room 147A, you can find Josh Siegle at the Neuropixels satellite event. Neuropixels probes, which were funded and tested by HHMI Janelia, Allen Institute, Wellcome Trust, the Gatsby Foundation, and imec, make it possible to record spikes from thousands of cells distributed across dozens of brain regions. They are likely to become a new standard for systems neuroscience research. Neuropixels probes can already be used with the Open Ephys GUI, and we're currently building new plugins to efficiently visualize the data they generate.

After the Neuropixels event, Josh will be DJing the Neurolabware party from 9-10 pm. Stop by the Neurolabware booth at the convention center to pick up your wristband and find out directions to the venue!

Cyclops version 3.6 on sale next week

A new and improved Cyclops LED driver will be available for anyone to order through the Open Ephys store beginning on Monday, November 13th. It's been a long time since we've had this in stock, so we're very excited to start selling it again. These units come fully assembled by OEPS—we're no longer selling kits. The base price is 450 euros, with the option to add an M8 connector (required to interface with LEDs from Thorlabs and Doric Lenses) for an additional 50 euros. This is an incredibly low cost, given how the Cyclops' specifications compare to LED drivers from commercial manufacturers.

GUI version 0.4.3 coming soon

A new version of the GUI is currently in the "testing" phase, meaning updated binaries will be available soon.

Some of the most important upgrades include:

  • The ability to record in 4 different data formats. The "binary" format now uses numpy and JSON files for all data except for continuous signals, which are saved as flat arrays of 16-bit integers.
  • A redesigned backend for defining and accessing information about particular channels. This provides greater transparency and flexibility for developers building new plugins.
  • An overhauled LFP Viewer, which includes a built-in spike raster display and new color schemes.
  • An Event Triggered Averaging module, which can display spike histograms time-locked to digital inputs for both multi-unit activity and single units.

Because this version includes so many new features, it would be extremely helpful if users could proivde some feedback prior to the official release. We'd like people to download the code from the testing branch on GitHub and make sure it works with their preferred experimental signal chain. If you're having trouble getting the code to compile, don't hesitate to email for guidance!

Until next time,

The Open Ephys Team

October 2016 Newsletter

Added on by Josh Siegle.

Announcing Open Ephys Production Site

We’re excited to announce our partnership with Open Ephys Production Site (OEPS), an independent company that will manufacture and distribute the tools featured on the Open Ephys website. In the past, we’ve produced hardware on an ad hoc basis, and it’s been difficult to keep products in stock. Having a dedicated company in charge of hardware distribution should reduce lead times dramatically. For the next two years, OEPS will be handling orders from our online store, and a portion of the profits will be donated to Open Ephys. By purchasing hardware from OEPS, you will help sustain our work in developing and supporting open-source tools for the neuroscience community.

At the beginning of November, OEPS will begin making Acquisition Boards and shipping them worldwide. Soon thereafter, they will begin manufacturing electrode interface boards for the flexDrive, as well as Cyclops LED drivers.

To place a reservation for one or more Acquisition Boards from OEPS, please send an email to indicating the quantity you'd like to order. The boards will cost 2250€ ($2500) each, and will include USB 3.0 data transmission by default. Orders can be placed through our existing store, or via purchase order. If you're at all interested, please get in touch. The number of reservations will be used to determine the quantity of boards in the first manufacturing run, to ensure that they don't run out.

The creation of OEPS is being led by Filipe Carvalho, who has spearheaded several previous acquisition board manufacturing runs, and who has extensive experience assembling and using our tools. We're thrilled to have his help in making it easier for neuroscientists to access open-source hardware!

Google Summer of Code

Our participation in the 2016 Google Summer of Code wrapped up in August. We had two students complete projects:

Kirill Abramov (Zaporizhzhya State Engineering Academy, Ukraine) built a Plugin Generator to simplify the process of creating new data processing plugins for the Open Ephys GUI. Instead of copying and pasting example code, there's now an intuitive graphical application for selecting the type of plugin you want to create (Source, Filter, Sink, File Reader, or Record Engine). You can also use the Plugin Generator to add parameters and lay out your plugin's interface. This will lower the barrier to entry for users wishing to add new features to the GUI, allowing them to focus on the functionality, rather than getting their code to run in the first place.

Ananya Bahadur (Amrita University, India) integrated the Cyclops LED driver into the Open Ephys GUI. On the hardware side, he upgraded the microcontroller on the Cyclops from an 8-bit Atmel AVR (Arduino Leonardo) to a more powerful 32-bit Freescale Cortex-M4 (Teensy 3.2). On the software side, he built a CyclopsStimulator plugin for the GUI that provides a simple way to use neural events (such as spikes or LFP features) to trigger LED-based optogenetic stimulation. These additions will improve the stimulation capabilities of the Open Ephys platform. We hope they will facilitate the next generation of experiments involving closed-loop optogenetics.

Ordering Cyclops LED Driver Kits

The most recent updates to Cyclops have been now incorporated into the hardware design, and the final prototypes are currently being tested by Jon Newman. We're planning to manufacture and distribute another round of Cyclops kits for $250 each. Before we place the order for all the components, we'd like to to gauge the level of community interest. If your lab would like to purchase one or more Cyclops kits, please add your name, email, and quantity requested to this Google spreadsheet. This does not constitute the actual order. We will have a separate ordering process once the kits are available.

Until next time,

The Open Ephys Team

June 2016 Newsletter

Added on by Josh Siegle.

More acquisition boards are on the way

The last round of Open Ephys acquisition boards sold out in less than 10 minutes, much faster than we expected. Fortunately, CircuitHub is currently manufacturing additional boards, which will be ready to ship sometime in July. If you were hoping to purchase boards but weren't able to submit an order in time, you can place a reservation for the next round by sending an email to

The CircuitHub acquisition board packages will include USB 3.0 data transmission (up to 512 channels), and will ship with two assembled I/O boards. You'll have to purchase headstages and cables separately from Intan Technologies.

Next-generation system development

We've been working on a set of standards that will hopefully form the backbone for the next generation of data acquisition systems. We are optimistic that a very simple common standard for hardware and software interconnects can make future data sources highly inter-operable without sacrificing any performance or flexibility. This means that engineers in academia and industry could focus on making better tools rather than re-inventing the data acquisition interface for each new system. The standard is still being developed, so any and all input is welcome. We encourage everyone to read through the latest white paper and get in touch with suggestions and opinions.

Open Ephys at SWC and TENSS

Four members of the Open Ephys team recently traveled to London to take part in a workshop on next-generation electrode technologies organized by Adam Kampff of the Sainsbury Wellcome Centre for Neural Circuits and Behavior. Following the workshop, we headed to Romania to visit the Transylvanian Experimental Neuroscience Summer School (TENSS). TENSS provides a unique opportunity for students from around the world to learn how to build cutting-edge neuroscience rigs in an idyllic, isolated setting. Over the past 3 years, much of the extracellular electrophysiology data in the course has been collected with the Open Ephys acquisition board.

In the days before the course began, we set up a prototype data acquisition system that transfers data via the PCIe bus. PCIe data transmission can greatly reduce the amount of time it takes for neural signals to reach a computer, compared to either USB or Ethernet. By the time the students arrived at the course, we had a demonstration up and running in which spikes occurring in visual cortex were used to trigger optogenetic activation of neurons in motor cortex, with a delay of less than 100 microseconds. The details of the recording system we used (which is a prototype of the next-generation system mentioned above) can be found in this repository.

New software available for download

A new release of the Open Ephys GUI is now available as pre-compiled binaries for Windows, Mac, and Linux. This release (v0.4.1) includes major performance improvements related to visualization and recording, as well as a greatly simplified installation process on OS X. For even more new features currently under development, check out the plugin-GUI development branch (which needs to be compiled from source).

We'd also like to remind everyone to be diligent about using the GUI's Issues page on GitHub. The more information we have about bugs and crashes, the faster they can get fixed!

Until next time,

The Open Ephys Team

April 2016 Newsletter

Added on by Josh Siegle.

Acquisition board pre-orders

CircuitHub is currently manufacturing 20 Open Ephys acquisition boards, which will be ready to ship in mid-May. We will start taking pre-orders through the Open Ephys web store at 12 pm Eastern time on Thursday, April 28th. We expect there to be high demand, so please place your order as soon as possible and limit your order to 2 boards per lab.

The new acquisition boards will come with USB 3.0 connectivity, which allows up to 512 channels of neural data to be acquired simultaneously. They will also ship with two assembled I/O boards, so you won't need to order those separately. The price will be $2500 per package. Headstages and cables can be purchased from Intan Technologies.

For this round, we can only accept payment via credit card. If you need to pay via purchase order, or you don't place your order in time, the Champalimaud Institute will be manufacturing more acquisition boards later this year. We'll send out an update via our newsletter once we know more about when those will be available.

GUI upgrades

We recently migrated our data acquisition software over to a true plugin architecture, which will make it much simpler to add and share new processing modules. Since that update, we've seen a flurry of changes that will considerably improve performance and enhance the user experience: Click-and-drag channel selection (added by Kirill Abramov, @sept-en) String-based channel selection via Matlab-like array syntax, e.g. "1:2:10" (added by Priyanjit Dey, @priyanjitdey94) Disk writing in a separate thread, to reduce CPU usage when recording many channels simultaneously (added by Aarón Cuevas López, @aacuevas) Faster LFP display (added by Jakob Voigts, @jvoigts) Streamlined build process on OS X (added by Christopher Stawartz, @cstawarz) Software icon (added by Josh Siegle, @jsiegle) All of these upgrades are now available in the "testing" branch of the plugin-GUI repository. If you have experience building the GUI from source, we would love help looking for bugs. After at least 2 weeks of testing, we'll move the changes to the "master" branch and make the upgrades available in the pre-compiled binaries.

If you haven't done so already, you should begin merging any changes you've made to the GUI into the plugin-based version. We will no longer be supporting the non-plugin GUI, although we'll leave the repository up if you need to refer to it. If you have any questions about migrating, don't hesitate to email or send a message to our mailing list (

Google Summer of Code 2016

We'd like to welcome three new members to the Open Ephys team: Kirill Abramov, Jonathan Sieber, and Ananya Bahadur. We selected these three students out of an outstanding pool of GSoC applicants. Between May and August, they will help us improve the Open Ephys GUI. Kirill will create a graphical interface for generating new plugins, which will lower the barriers to adding new functionality to the software. Jonathan will make it possible to write real-time data processing algorithms in Julia, as well as interface the GUI with EEG hardware from OpenBCI. Ananya will create a module for interfacing the GUI with the Cyclops LED driver, to simplify the process of setting up closed-loop experiments. These are features we've been hoping to add for a long time, so we're excited to see what Kirill, Jonathan, and Ananya come up with.

Until next time,

The Open Ephys Team

SfN2016 Poster

Added on by Open Ephys.

At SfN 2016 in San Diego, some of us at open ephys, together with many collaborators that helped shape the system, presented a rough outline of a proposed next generation data acquisition system based on the PCIe standard.

The poster can be viewed and downloaded on the next-gen-system Github repository.

The project is still a work in progress, and more information can be found in the whitepapers and specifications.

May 2015 Newsletter

Added on by Open Ephys.

Hardware distribution

As a small, volunteer-run organization, one of Open Ephys' primary challenges is putting the hardware we’ve designed into the hands of everyone that wants to use it. A few intrepid souls have successfully built our tools from scratch, but most of our users prefer to have something that’s plug and play. To streamline the hardware manufacturing and distribution process, we’ve partnered with CircuitHub, a manufacturing startup, and the Champalimaud Institute in Lisbon. Over the past few months, they've assembled and shipped our acquisition boards, I/O boards, and electrode interface boards to dozens of labs around the world. Almost all of the components were sold before the manufacturing process was finished, so we're currently holding off on accepting orders for most items through our online store. The electrode interface boards, especially, were more popular than expected. We apologize to everyone who requested boards we haven’t delivered yet.

Moving forward, plans are already underway for CircuitHub and Champalimaud to produce additional hardware. As usual, the bottleneck is Omnetics connectors. The 12-pin connectors for the acquisition boards should arrive at the end of May, while the 36-pin connectors for the electrode interface boards are expected in 10 weeks. Announcements about product availability will be sent via our newsletter as soon as we have more precise shipping dates.

In the future, we'll try to keep some backup stock of all the items featured on our store, and to have product availability reflect our ability to ship right away. While pre-orders have been useful for gauging interest levels and financing production runs, our current goal is reducing lead times. We’d like to have the experience of ordering from Open Ephys be as simple as making purchases from any commercial retailer, and we realize that hasn’t always been the case. Now that we have a better sense of demand, we'll work with both CircuitHub and the Champalimaud Institute to keep the supply more consistent.

Panel Discussion on “Making in Science”

On May 12, Josh Siegle and Jon Newman took part in a panel discussion at MakerCon in San Francisco. Josh is the co-founder of Open Ephys, and Jon is the engineer behind the Cyclops LED driver and the NeuroRighter data acquisition system, as well as a key contributor to Open Ephys. MakerCon is a semi-annual meeting of entrepreneurs, engineers, and designers with an interest in growing communities around novel hardware platforms. Open Ephys has benefitted tremendously from the rise of tools for prototyping and manufacturing on a small scale, while the community of makers is always excited to learn how open-source hardware can facilitate scientific discoveries. Our session, titled "Making In Science," was organized by Steve Potter of Georgia Tech, an ardent advocate of the benefits of open-source tools in neuroscience. Other panelists included Conor Russomanno of Open BCI, Ariel Garten of InteraXon, Greg Gage of Backyard Brains, and Jamie Tyler of Thync. Both the panelists and the audience were highly enthusiastic about our progress and goals. There is huge potential for applying our tools for human EEG research, with only minor modifications.

Our first tax return

This month, Open Ephys filed its first tax return as a nonprofit corporation. Although we don’t have to pay income tax, we’re required to disclose our finances to the IRS, and to make our tax forms available upon request. In 2014, we coordinated the distribution of acquisition boards ourselves, earning $137,406 worth of revenue in the process. We spent $97,318 on manufacturing at Advanced Circuits, American Precision Prototyping, and Ponoko. The remaining funds covered the stipend of Aarón Cuevas López, our official support person. Having Aarón’s help has been essential for the growth of Open Ephys over the past year. Not only has he handled bug fixes and general support requests, but he’s also made key upgrades to the software, such as adding HDF5 recording capabilities and 64-channel headstage support. We’re happy to report that we just extended his contract for at least another year.

January 2015 Newsletter

Added on by Open Ephys.

Open Ephys Store

One of the central goals of Open Ephys is to make it simpler for neuroscientists to access open-source tools. With the launch of the Open Ephys store, we are further lowering the barrier to entry for getting the tools we're sharing up and running in your lab. The store is still in beta, so we can't guarantee everything will be in stock, and the volunteers who run it will only be sending shipments out once or twice a week. Still, we will try our best to fulfill your orders in a timely manner.

The first round of acquisition boards we're selling through the store have been manufactured by the Champalimaud Neuroscience Program. They have the same design as the boards distributed through our previous CircuitHub campaign. In addition to the acquisition boards, our partners in Lisbon have built fully assembled I/O boards (for interfacing with auxiliary analog signals or digital triggers) and electrode interface boards (EIBs, for building drive implants), which will also be available through the store. We're taking orders now which we expect to fulfill in early February.

Software update (version 0.3.4)

There's a new version of the Open Ephys GUI available for download through our website (pre-compiled binaries) or via GitHub (source code). As a major under-the-hood upgrade, we added the ability for processing modules to simultaneously handle data with different sample rates and timestamps. Previously, all data traveling through the signal chain had to use the same clock. This change will make it possible to merge continuous data from different types of sources, and to process down-sampled LFP data in parallel with the spike band, which can speed up analysis and reduce file sizes.

In addition, the updated GUI includes four new processing modules:

  • Common Average Referencing module, which takes the average signal of a subset of the incoming channels and subtracts it from the output. This can be useful for extracting spikes from noisy data.
  • Network Events module, which allows other computers (or another piece of software running on the same machine) to control the behavior of the GUI.
  • PSTH module, which creates average firing rate plots aligned to particular events, either triggered by TTL inputs or incoming network messages.
  • An Arduino Output module, which makes it possible for events within the GUI to control the state of digital output pins of an Arduino. This is a simple way to set up experiments involving closed-loop feedback.

Documentation for these processors can be found on the Open Ephys Wiki.

Goals for 2015

We have a lot of exciting developments planned for 2015. Here are some of the most important ones:

  • We will become an official 501(c)(3) nonprofit. We just finished the application and will send it out in the next few days.
  • We will expand our manufacturing partnership with CircuitHub. We'd like to be able to reduce lead times for acquisition boards and other hardware from a few months to a few weeks. We want to have our tools available year-round, and with less time between placing the order and receiving a package in the mail.
  • We will implement a "feature freeze" on the Open Ephys GUI and limit the development on the GitHub master branch to bug fixes and performance upgrades. This will ensure that our users always know where to go to find the most stable version of our software, and will never have to worry that an upgrade will change the functionality in a major way. As more people start using the GUI for their day-to-day data collection, it's important to balance our eagerness to add features with the need to provide a robust platform for performing experiments. The development of new processors will continue, but it will take place in a separate, plugin-based repository.

If you'd like to know more about where Open Ephys is headed, or would like to help out in any way, don't hesitate to send an email to

Until next time,
The Open Ephys Team