open-source electrophysiology

Publications describing Open Ephys tools

Please cite these articles if you use our hardware or software.


Siegle JH, Cuevas López A, Patel YA, Abramov K, Ohayon S, Voigts J (2017) Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J Neural Eng 14: 045003 PDF


Newman JP, Fong M, Millard DC, Whitmire CJ, Stanley GB, Potter SM (2015) Optogenetic feedback control of neural activity. eLife 4: e07192 PDF


Voigts J, Siegle JH, Pritchett DL, Moore CI (2013) The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice. Front Sys Neurosci 7: 8 PDF

Publications and preprints using Open Ephys tools

Please contact us if you know of something we can add to this list!


Széll A, Martínez-Bellver S, Hegedüs P, Hangya B (2019) OPETH: Open source solution for real-time peri-event time histogram based on Open Ephys. bioRxiv link

Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK et al. (2017) Fully integrated silicon probes for high density recording of neural activity. Nature 551: 232-236 link

Mathis MW, Mathis A, Uchida N (2017) Somatosensory cortex plays an essential role in forelimb motor adaptation in mice. Neuron 93: 1493-1503 PDF

Arneodo EM, Chen S, Gilja V, Gentner TQ (2017) A neural decoder for learned vocal behavior. bioRxiv PDF

Guo L, Walker WI, Ponvert ND, Penix PL, Jaramillo S (2017) Stable representation of sounds in the posterior striatum during flexible auditory decisions. bioRxiv PDF

John Hermiz, Nick Rogers, Erik Kaestner, Mehran Ganji, Dan Cleary, Joseph Snider,David Barba, Shadi Dayeh, Eric Halgren, Vikash Gilja (2016) A clinic compatible, open source electrophysiology system. Engineering in Medicine and Biology Society (EMBC) PDF

Wasilczuk AZ, Proekt A, Kelz MB, McKinstry-Wu AR (2016) High-density electroencephalographic acquisition in a rodent model using low-cost and open-source resources. J Vis Exp 117: e54908 PDF

Weible AP, Liu Christine, Niell CM, Wehr M (2014) Auditory cortex is required for fear potentiation of gap detection. J Neurosci 34: 15437-15445 PDF

Acquisition Board

Clancy KB, Orsolic I, Mrsic-Flogel T (2019) Locomotion-dependent remapping of distributed cortical networks. Nature Neuroscience 22: 778-786 link

Bennett C, Gale SD, Garrett ME, Newton ML, Callaway EM, Murphy GJ, Olsen SR (2019) Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102: 477-492 link

Asamoah B, Khatoun A, McLaughlin M (2019) tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nature Communications 10: 266 link

Johnston K, Ma L, Schaeffer L, Everling S (2019) Alpha oscillations modulate preparatory activity in marmoset area 8Ad. J Neurosci 39: 1855-1866 link

Solari N, Sviatkó K, Laszlovszky T, Hegedüs P, Hangya B (2018) Open source tools for temporally controlled rodent behavior suitable for electrophysiology and optogenetic manipulations. Front Syst Neurosci link

Wang J, Devika N, Eghbal EA, Jazayeri M (2018) Flexible timing by temporal scaling of cortical responses. Nature Neuroscience 21: 102–10 link

Dimitriadis G, Neto JP, Aarts A, Alexandru A, et al. (2018) Why not record from every channel with a CMOS scanning probe? bioRxiv PDF

Yüzgeç Ö, Prsa M, Zimmerman R, Huber D (2018) Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Curr Biol 28: 1-9 PDF

Okun M, Lak A, Carandini M, Harris K (2016) Long term recordings with immobile silicon probes in the mouse cortex. PLoS ONE 11(3): 1-17 PDF

Siegle JH, Wilson MA (2014) Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus. eLife 3: e03061 PDF


Meyer A, Poort J, O’Keefe J, Sahani1 M, Linden JF (2018) A head-mounted camera system integrates detailed behavioral monitoring with multichannel electrophysiology in freely moving mice. Neuron 100: 46-60 link

Dvorak D, Radwan B, Sparks FT, Talbot ZN, Fenton AA (2018) Control of recollection by slow gamma dominating mid-frequency gamma in hippocampus CA1. PLoS Biol 16: e2003354 link

Carlson KS, Gadziola MA, Dauster ES, Wesson DW (2018) Selective attention controls olfaction in rodents. bioRxiv link

Talbot ZN, Sparks FT, Dvorak D, Curran BM, Alarcon JM, Fenton AA (2018) Normal CA1 place fields but discoordinated network discharge in a Fmr1-null mouse model of Fragile X syndrome, Neuron 97: 684-697 link

Mably AJ, Gereke BJ, Jones DT, Colgin LL (2017) Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer's disease. Hippocampus 27: 378–392 link

LeBlanc BW, Cross B, Smith KA, Roach C, Xia J, Chao Y, Levitt J, Koyama S, Moore CI, Saab CY (2017) Thalamic bursts down-regulate cortical theta and nociceptive behavior. Sci Reports 7: 2482 PDF

Shein-Idelson M, Ondracek JM, Liaw H, Reiter S, Laurent G (2016) Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science 352: 590-595 PDF

Kim D, Jeong H, Lee J, Ghim J, Her ES, Lee S, Jung M (2016) Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory Neuron 92: 902-915 link